mangegmant

Number 60, Year XVI September 2011.

Publisher

Faculty of Organizational Sciences - Belgrade

Dean
Milan Martić, Ph.D.
Editor in Chief
Ale ksa ndar Mar ković, Ph.D

Editor of Internal Department Ondre j Jaško, Ph.D.

Editor of Inter national Department
Jovan Filipović, Ph.D.

Editorial Board:
Čedomir Nestorović, PhD, Faculty of Coimbra, Portugal Dejan Petović, Ph.D., Faculty of Organizational Sciences, Belgrade
Jasmina Ćetković, PhD, Faculty of Economics, Podgorica, Montenegro Jasmina Omerbegović Bijelović, Ph.D.,Faculty of OrganizationalSciences, Belgrade drSonja Petrović - Lazarević, Ph.D.,Department of Management, Monash University, Australia
Milan Martić, Ph.D., Faculty of Organizational Sciences, Belgrade
Goran Putnik, PhD, Univerzity of Minho, Portugal
Mirjana Drakulić, Ph.D., Faculty of Organizational Sciences, Belgrade Miroslav Svatoš, Faculty of Economics, Chesh
Milija Suknović, Ph.D., Faculty of Organizational Sciences, Belgrade
Robert Leskovar, PhD, Faculty of Organizational Sciences, Kranj, Slovenia Siniša Nešković, PhD, Faculty of Organizational Sciences, Belgrade Roberto Biloslavo, PhD, Faculty for Management, Koper, Slovenia V esna Milićević, PhD, Faculty of Organizational Sciences, Belgrade
Stanka Setnikar Cankar, PhD, Faculty of Admin istration, Ljublj ana, Slovenia Vinka Filipović, PhD,Faculty of Organizational Sciences, Belgrade Peter A. Delisle, Phd, Austin College
Peter Bielik, Ph.D., Faculty of Economics and Management, Slovak Republic Milica Bulajić, PhD, Faculty of Organizational Sciences, Belgrade
Sladj an a Barjaktarović, PhD, Faculty of OrganizationalSciences, Belgrade
Manag ement is being regularly reviewe din DEST

- Department of Education, Science and Training of Australia Ulrich Periodicals

Technical Editor Milivoje Radenkovic Andrej Nov ović Address
Belg rade, Jove Ilića 154 Tel./fax. 381113950868 E-mail: manage@fon.bg.ac.rs http://management.fon.bg.ac.rs

Jour nal is published quarterly
Printed by
Sigra Star, Be lgra de

CIP Katalogizacija u publikaciji Narodna biblioteka Srbije, Beograd 005
ISSN 1820-0222 = Management (Engl. ed.) COBISS.SR-ID 112265484

Copyright © 2004 by Faculty of Organizational Sciences

CONTENTS

5 ICT as Crucial Component of Socio-Economic Development
 Veljko Jeremić, Aleksandar Marković,
 Zoran Radojičić

11 Towards Framework for Higher Environmental Education

Nataša Petrović, Mirjana Drakulić, Sonja Išljamović, Veljko Jeremić, Ratimir Drakulić

19 The Influence of Cloud Computing Concept on Organizational
 Performance and Structure Mladen Čudanov, Jovan Krivokapić, Jovan Krunić

27 Developing Mobile Application for Learning Japanese Language FONJAPGO

Miloš Milutinović, Dus̆an Barać, Marijana Despotovic-Zrakic, Aleksandar Marković, Božidar Radenković

35 Communal Waste Management - Case Study for Slovenia
 Aleš Gabršček, Sonja Išljamovic

43 What Use is Knowledge if there is no Understanding

Gordana Jakić, Marija Novaković

51 Virtual Reality in Distance Education and Marketing Communications

Vesna Buha, Radmila Janičić, Vinka Filipović, Mirjana Gligorijević

61 Biofuels and their Impact on Carbon Footprint
Marjan Senegačnik, Drago Vuk, Nataša Petrović, Sonja Išljamović, Veljko Jeremić

69 Boards of Directors Models and Role in Corporate Governance
 Jelena Nikolić, Jelena Erić

77 Motivational Aspects of Corporate Culture in International Management Nevena Krasulja, Ivana Radojević Gujanica

86 Book review

Maja Levi Jakšic

ICT as Crucial Component of Socio-economic Development
 UDC: 330.45:519.87

Veljko Jeremić, Aleksandar Marković, Zoran Radojičić
Faculty of Organizational Sciences, University of Belgrade

Abstract

The aim of this paper is to present new ideas in evaluating socio-economic development of countries. Since Internet connectedness and IT literacy are very often introduced as indicators of socio-economic development, ICT infrastructure is of huge research interest. The World Bank's ICT at glance database published annually presents essential data about every country's ICT indicators. However, no composite indicator of ICT infrastructure is presented. Aim of our paper is to present a composite indicator which synthesizes a number of indicators into one value. With this approach, countries can be ranked according to their ICT development. Moreover, useful insights will be provided for the developing countries and a path for enhancing their ranking will be elaborated.

1. Introduction

The measure of a country's welfare is one of the most critical and highly debated issues in economic research [1]. Certain researchers [2] address the hypothesis that GNP (or GDP) per capita cannot be considered as being the only indicator of the performance of a country since it does not capture the overall well-being of its population. Nevertheless, it is very common to rank countries according to their GDP (or GNP) in the current literature on the subject. One potential improvement is the World Bank's Human Development Index (HDI), which is based on a country's per capita GDP, life expectancy at birth and adult literacy rate [3]. However, this instrument has seen much disagreement; in particular, it is a simple weighting of each variable and the usual high correlation between GDP and certain background variables [3]. Besides the abovementioned issues, the real problem concerning the HDI is a small number of variables (just three) incorporated into the ranking process. Moreover, the HDI does not take into account an essential component of modern economies - ICT. Several papers emphasize its importance by incorporating the Internet connectedness and IT literacy as key indicators of so-cio-economic development. There are several reasons for this approach. Many previous research articles pointed out that people's ability to handle information is crucial for their future success [4]. These skills known as IT literacy - can be considered a 21st-century form of literacy [5]. In today's globalized world, it is virtually impossible to imagine any business process without IT experts. Further on, whole range of our daily activities (shopping, banking) is dependant upon the Internet. The supper fast broadband, numerous WiFi access points, all of them are characteristics of wealthy and powerful countries. Consequently, it is essential to elaborate this indicator as hugely important in determining countries' welfare. In a line with this, the intention of this work is to examine the develop-
ment level of the countries' ICT infrastructure. Therefore, the goal is to determine not only which countries are ICT leaders but also which indicators are crucial for rank determining.

2. The i-distance method

The ranking of specific issues is quite often carried out in a way that can seriously affect the process of taking exams, entering competitions, the UN participation, medicine selection and many other subjects $[6,7,8,9]$. A key argument for applying the I-distance method is that this approach is capable of synthesizing many variables into one numerical value. This has proven to be quite useful since all the variables have a different type of measurement each [6, 7]. I-distance is a metric distance in an n-dimensional space. This method has been proposed and defined in various publications that have appeared since 1963 by B. Ivanovic [10]. Ivanovic created this method to rank countries according to their level of development on the basis of several indicators. Many socio-economic development indicators have been considered in the use of this method and the problem has been how to use all of them in order to calculate a single synthetic indicator which will represent the rank.

For a selected set of variables $X^{T}=\left(X_{1}, X_{2}, \ldots, X_{k}\right)$ chosen to characterize the entities, the I-distance between the two entities $e_{r}=\left(x_{1 r}, x_{2 r}, \ldots, x_{k r}\right)$ and $e_{s}=\left(x_{1 s}, x_{2 s}, \ldots, x_{k s}\right)$ is defined as:
$D(r, s)=\sum_{i=1}^{k} \frac{\left|d_{i}(r, s)\right|}{\sigma_{i}} \prod_{j=1}^{i-1}\left(1-r_{j i .12 \ldots j-1}\right)$
where $d_{i}(r, s)$ is the distance between the values of the variable X_{i} for e_{r} and $e_{s,}$ e.g. the discriminate effect,

$$
\begin{equation*}
d_{i}(r, s)=x_{i r}-x_{i s}, \quad i \in(1, \ldots, k) \tag{2}
\end{equation*}
$$

σ_{i} the standard deviation of X_{i}, and $r_{j i .12 \ldots . . j-1}$ is a partial coefficient of correlation between X_{i} and $X_{j},(j<i),[10,11]$.

The construction of the I-distance is iterative. It is calculated through the following steps:

1. calculate the value of the discriminate effect of variable X_{i} (the most significant variable, which provides the largest amount of information on the phenomena needed to be ranked);
2. add the value of the discriminate effect of X_{2} which is not covered by X_{1};
3. add the value of the discriminate effect of X_{3} which is not covered by X_{1} and X_{2};
4. repeat the procedure for all variables $[12,13]$.

This I-distance fulfills all 13 conditions for defining the measures of distances and has proven useful in overcoming differences in measures. It is essential to point out that the I-distance method requires a standardization of all data. Sometimes it is not possible to achieve the same sign mark for all variables in all sets, therefore a negative correlation coefficient and negative coefficient of a partial correlation may occur. Thus, the use of the square I-distance is even more desirable [3, $4,11,12$], which is given as:

$$
\begin{equation*}
D^{2}(r, s)=\sum_{i=1}^{k} \frac{d_{i}^{2}(r, s)}{\sigma_{i}^{2}} \prod_{j=1}^{i-1}\left(1-r_{j i .12 \ldots j-1}^{2}\right) \tag{3}
\end{equation*}
$$

In order to rank the entities - countries in this case- in the observed set using the I-distance methodology, it is necessary to fix one entity as a referent: an entity with a minimal value for each indicator. The ranking of the entities in the set is based on the calculated distance from the referent entity.

3. Results

In this paper, attention is being focused on examining and measuring the ICT industry in the 26 members of the European Union (due to a lack of data, Malta has not been analyzed) and other 10 developed and developing countries (including Serbia). All of the input data were obtained from World Bank [14]. In order to rank the countries, the following 14 variables have been used:

Table 1. Indicators for determining ICT development level

Access	Telephone lines (per 100 people)
	Mobile cellular subscriptions (per 100 people)
	Fixed Internet subscribers (per 100 people)
	Personal computers (per 100 people)

Usage	Internet users (per 100 people)
Quality	Fixed broadband subscribers (\% of total Internet subscribers)
Affordability	Residential fixed line tariff (US\$/month)
	Mobile cellular prepaid tariff (US\$/month)
	Fixed broadband Internet access tariff (US\$/month)
Trade	ICT goods exports (\% of total goods exports)
	ICT goods imports (\% of total goods imports)
	ICT service exports (\% of total service exports)
Applications	E-government Web measure index
	Secure Internet servers (per 1 million people)

The results achieved through the use of the I-distance ranking method are presented in Table 2. The Netherlands topped the list according to the I-distance method. Tthe top of the list is occupied by the European countries. It is not surprising at all, since Europe has much more homogenous population and their constant commitment to ICT values is easily understood. All of them have huge percentage of Internet users, computers and telephone lines are accessible to almost everyone, and even the number of secure Internet servers is increasing. All of these factors result in top positions for European countries. On the other hand, China and India are at the bottom of the list. This is a very interesting finding. India has emerged as an ICT power in the last decade. However, ICT is a priviledge of a small number of citizens. A far greater percentage of population is not in a position to benefit from the constant development in the field of ICT. With only 4.5 Internet users per 100 people (while the Netherlands has 87), it is obvious that only a small part of India is embracing the rapid development of ICT. For all the others, ICT is out of reach. Very similar conclusions can be drawn in the example of China. Also, Serbia is very low ranked. It is quite obvious that Serbia is still far away from the EU development goals and has to improve all indicators of the country's welfare. This is particularly the case with ICT variables, since 43.7% of the population have never used a computer (EU-27 average is 26%) and 54.1% have never used the Internet; EU-27 average is 30% [15, 16]. These indicators are far from the EU standards and Serbia definitely has to focus its attention on ICT. It is clear that there are several regions in Serbia where the use of ICT is by
far more widespread than in the other regions. For instance, the capital, Belgrade, and the northern part of Serbia (Vojvodina region) are significantly more advanced than the south Serbia. Moreover, "IT Park" is being developed in Indjija (Vojvodina region) and Government realizes the need for ICT investments as a crucial component of economic growth.

Table 2. The Results of the Square I-distance Method, I-distance Value and Rank

Country	I-distance	Rank I-distance
The Netherlands	63.253	1
Island	60.240	2
Switzerland	59.878	3
Sweden	58.462	4
Denmark	58.149	5
Luxembourg	55.058	6
Estonia	54.663	7
Great Britain	54.299	8
France	52.905	9
USA	51.082	10
Austria	50.931	11
Hungary	49.781	12
Finland	46.639	13
Spain	45.600	14
The Czech Republic	44.882	15
Belgium	44.266	16
Australia	43.574	17
German	42.550	18
Portugal	41.962	19
Japan	38.362	20
Slovakia	37.898	21
Brazil	37.875	22
Cyprus	35.355	23
Greece	34.010	24
Lithuania	33.302	25
Bulgaria	32.938	26
Slovenia	32.595	27
Poland	30.730	28
Italia	30.123	29
Latvia	29.998	30
Macedonia	26.994	31
Romania	25.071	32
Country	I-distance	Rank I-distance
Serbia	23.883	33
China	21.760	34
India	17.374	35
Russia	15.399	36

This data set was further examined and a correlation coefficient of each indicator with the I-distance value was determined, the results of which are presented in Table 3 (Pearson correlation test has been used). As it appears, the most significant variable for determining the ICT development is the Internet users (per 100 people), with $\mathrm{r}=.861, \mathrm{p}<.01$. This conclusion is in a line with many previous papers which emphasize the Internet connectedness rate as quite significant for determining a country's development level. In a line with this, it is essential that Serbia and other low-ranked countries should improve the most significant indicators.

Table 3. The Correlation between I-distance and Input Indicators

Indicators	r
Internet users (per 100 people)	$.861 * *$
Secure Internet servers (per 1 million people)	$.764^{* *}$
Personal computers (per 100 people)	$.763^{* *}$
Fixed Internet subscribers (per 100 people)	$.733^{* *}$
E-government Web measure index	$.711^{* *}$
Fixed broadband Internet access tariff (US\$/month)	$.671^{* *}$
Residential fixed line tariff (US\$/month)	$.654^{* *}$
Telephone lines (per 100 people)	$.642^{* *}$
Fixed broadband subscribers (\% of total Internet subscribers)	$.513^{* *}$
Mobile cellular prepaid tariff (US\$/month)	$.370^{*}$
Mobile cellular subscriptions (per 100 people)	.280
ICT service exports (\% of total service exports)	.195
ICT goods exports (\% of total goods	
exports)	

4. Conclusion

Knowledge economy is becoming the most important factor in the development of the society and regions [17]. As crucial components of knowledge, IT literacy and the Internet connectedness have long been in the focus of research. Some papers have tried to examine the influence of of sociocultural factors on the level of the Internet connectedness [18]. On the other hand, the same author compared the PC Internet connectedness and mobile Internet connectedness [19]. Nonetheless, only a few researchers have tried to explore the interlinkage between the Internet connectiv-

ity and the economic development [20]. As a way to enhance the importance of this indicator, a novel approach has been proposed in this work in which future research on economic and social performance of countries can be based on. By using the I-distance method, a synthesized indicator that incorporates many social and economic indicators can be created. Results presented in this study, clearly show that Serbia has a long way ahead of achieving the European Union development goals and becoming a full member of the EU. In particular, concepts of sustainable development and green IT must be implemented [21, 22]. With only 25.8% of population that own a personal computer and 11.6% the Internet subscribers [14], it is crucial that Serbia should focus its attention on the ICT industry and consequently improve its country welfare.

REFERENCES

[1] Cracolici MF, Cuffaro M and Nijkamp P (2010). The Measurement of Economic, Social and Environmental Performance of Countries: A Novel Approach. Social Indicators Research, 95(2):339-356.
[2] Davidson EA (2000). You can't eat GNP: Economics as if ecology mattered. Cambridge, MA: Perseus.
[3] Jeremic V, Isljamovic S, Petrovic N, Radojicic Z, Markovic A and Bulajic M (2011). Human development index and sustainability: What's the correlation? Metalurgia International, 16(7):63-67.
[4] Jeremic V, Vukmirovic D, Radojicic Z and Djokovic A (2011). Towards a framework for
evaluating ICT infrastructure of countries: a Serbian perspective. Metalurgia International, 16(9):15-18.
[5] Leung L (2010). Effects of Internet Connectedness and Information Literacy on Quality of Life. Social Indicators Research, 98(2):273-290.
[6] Ivanovic B (1973). A method of establishing a list of development indicators. Paris: United Nations educational, scientific and cultural organization.
[7] Ivanovic B and Fanchette S (1973). Grouping and ranking of 30 countries of Sub-Saharan Africa, Two distance-based methods compared. Paris: United Nations educational, scientific and cultural organization.
[8] Jeremic V and Radojicic Z (2010). A New Approach in the Evaluation of Team Chess Championships Rankings, Journal of Quantitative Analysis in Sports, 6(3):Article 7.
[9] Al-Lagilli S, Jeremic V, Seke K, Jeremic D and Radojicic Z (2011). Evaluating the health of nations: a Libyan perspective. Libyan Journal of Medicine, 6:6021.
[10] Ivanovic B (1977). Classification Theory, Institute for Industrial Economic, Belgrade.
[11] Jeremic V, Bulajic M, Martic M and Radojicic Z (2011). A fresh approach to evaluating the academic ranking of world universities. Scientometrics, 87(3):587-596.
[12] Jeremic V, Seke K, Radojicic Z, Jeremic D, Markovic A, Slovic D and Aleksic A (2011). Measuring health of countries: a novel approach. HealthMED, In Press.
[13] Mihailovic N, Bulajic M and Savic G (2009). Ranking of banks in Serbia. YUJOR, 19(2):323-334.
[14] http://data.worldbank.org/data-catalog/ICT-table
[15]http://webrzs.stat.gov.rs/WebSite/Public/PageVie w.aspx?pKey=205
[16] Nita V (2011). An extended approach to e-inclusion and its implications for Romania. Romanian Journal of European Affairs, 11(1):63-80.
[17] Gholami R, Higon DA, Hanafizadeh P and Emrouznejad A (2010). Is ICT the key to development? Journal of Global Information Management, 18(1):66-83.
[18] Jung J (2008). Internet connectedness and its social origins: An ecological approach to postaccess digital divides. Communication Studies, 59(4):322-339.
[19] Jung J (2008). Where do you go online? A comparison of internet connectedness via personal computers and mobile phoned in Japan. International Journal of Mobile Communications. 7(1):21-35.
[20]http://www.creativeclass.com/creative_class/2010/ 07/30/internet-connectivity-and-economic-development/
[21] Petrovic N, Drakulic M, Vujin V, Drakulic R and Jeremic V (2011). Climate changes and green information technologies. Management, 16(59):3543.
[22] Petrovic N, Isljamovic S and Jeremic V (2010). Zero waste as a new concept for sustainable development. Management, 15(57):39-45.

